Groebner Bases Applied to Systems of Linear Difference Equations

نویسنده

  • Vladimir P. Gerdt
چکیده

In this paper we consider systems of partial (multidimensional) linear difference equations. Specifically, such systems arise in scientific computing under discretization of linear partial differential equations and in computational high energy physics as recurrence relations for multiloop Feynman integrals. The most universal algorithmic tool for investigation of linear difference systems is based on their transformation into an equivalent Gröbner basis form. We present an algorithm for this transformation implemented in Maple. The algorithm and its implementation can be applied to automatic generation of difference schemes for linear partial differential equations and to reduction of Feynman integrals. Some illustrative examples are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Difference Groebner Bases

This paper is an updated and extended version of our note [1] (cf. also [2]). To compute difference Gröbner bases of ideals generated by linear polynomials we adopt to difference polynomial rings the involutive algorithm based on Janet-like division. The algorithm has been implemented in Maple in the form of the package LDA (Linear Difference Algebra) and we describe the main features of the pa...

متن کامل

A Maple Package for Computing Groebner Bases for Linear Recurrence Relations

A Maple package for computing Gröbner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two po...

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

An Application of Groebner Bases to Planarity of Intersection of Surfaces

In this paper we use Groebner bases theory with the purpose to determine planarity of intersections of two algebraic surfaces in R. There are specially considered plane sections of a type of conoid which has a cubic egg curve as one of the directrices. The paper investigates a possibility of conic plane sections of this type of conoid. 1. THE BASIC CONCEPT OF GROEBNER BASES Many problems in mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0611041  شماره 

صفحات  -

تاریخ انتشار 2006